Saturday, January 3, 2009

`int_0^(pi/2) cos^2(theta) d theta` Evaluate the integral

`int_0^(pi/2)cos^2(theta)d(theta)`


Use the identity: `cos^2x=(1+cos(2x))/2`


`intcos^2(theta)d(theta)=int(1+cos(2theta))/2d theta`


`=1/2int(1+cos(2theta))d theta`


`=1/2(int1d theta+intcos(2theta)d theta)`


`=1/2(theta+sin(2theta)/2)`


add a constant C to the solution,


`=1/2(theta+sin(2theta)/2)+C`


`int_0^(pi/2)cos^2(theta)d theta=[1/2(theta+sin(2theta)/2)]_0^(pi/2)`


`=[1/2(pi/2+sin(2*pi/2)/2)]-[1/2(0+sin(0)/2)]`


`=[1/2(pi/2+0/2)]-[1/2(0)]`


`=pi/4`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...