Tuesday, January 27, 2009

`int (dt)/sqrt(t^2 - 6t + 13)` Evaluate the integral

`intdt/sqrt(t^2-6t+13)`


Let's evaluate the integral by rewriting it by completing the square on the denominator,


`=intdt/sqrt((t-3)^2+4)`


Now let's use the integral substitution,


Let `u=t-3`


`=>du=dt`


`=int(du)/sqrt(u^2+4)`


Now use the trigonometric substitution: For `sqrt(bx^2+a)`  substitute `x=sqrt(a)/sqrt(b)tan(v)`


So ,Let `u=2tan(v)`


`=>du=2sec^2(v)dv`


`=int(2sec^2(v)dv)/sqrt((2tan(v))^2+4)`


`=int(2sec^2(v)dv)/sqrt(4tan^2(v)+4)`


`=int(2sec^2(v)dv)/sqrt(4(tan^2(v)+1))`


`=int(2sec^2(v)dv)/(2sqrt(tan^2(v)+1))`


`=int(sec^2(v)dv)/sqrt(tan^2(v)+1)`


Now use the identity:`1+tan^2(x)=sec^2(x)`


`=int(sec^2(v)dv)/sqrt(sec^2(v))`


`=intsec(v)dv`


Now use the standard integral.


`intsec(x)dx=ln|sec(x)+tan(x)|`


`=ln|sec(v)+tan(v)|`


Substitute back `tan(v)=u/2`


`=>1+tan^2(v)=sec^2(v)`


`=>1+(u/2)^2=sec^2(v)`


`=>sec^2(v)=(u^2+4)/4`


`=>sec(v)=sqrt(u^2+4)/2`


Plug these into the solution, thus


`=ln|sqrt(u^2+4)/2+u/2|`


Now plug back u=t-3 and add a constant C to the solution,


`=ln|sqrt((t-3)^2+4)/2+(t-3)/2|+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...