Sunday, November 10, 2013

`int_(pi/6)^(pi/2) cot^2(x) dx` Evaluate the integral

`int_(pi/6)^(pi/2)cot^2(x)dx`


Let's first evaluate the indefinite integral,


Use the identity:`cot^2(x)=csc^2(x)-1`


`intcot^2(x)dx=int(csc^2(x)-1)dx`


`=intcsc^2(x)dx-int1dx`


use the common integral: `intcsc^2(x)dx=-cot(x)`


`=-cot(x)-x`


`:.int_(pi/6)^(pi/2)cot^2(x)dx=[-cot(x)-x]_(pi/6)^(pi/2)`


`=[-cot(pi/2)-pi/2]-[-cot(pi/6)-pi/6]`


`=[-pi/2]-[-sqrt(3)-pi/6]`


`=-pi/2+sqrt(3)+pi/6`


`=sqrt(3)-pi/3`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...