`int_(pi/6)^(pi/2)cot^2(x)dx`
Let's first evaluate the indefinite integral,
Use the identity:`cot^2(x)=csc^2(x)-1`
`intcot^2(x)dx=int(csc^2(x)-1)dx`
`=intcsc^2(x)dx-int1dx`
use the common integral: `intcsc^2(x)dx=-cot(x)`
`=-cot(x)-x`
`:.int_(pi/6)^(pi/2)cot^2(x)dx=[-cot(x)-x]_(pi/6)^(pi/2)`
`=[-cot(pi/2)-pi/2]-[-cot(pi/6)-pi/6]`
`=[-pi/2]-[-sqrt(3)-pi/6]`
`=-pi/2+sqrt(3)+pi/6`
`=sqrt(3)-pi/3`
No comments:
Post a Comment