`intsin^2x cos^3x dx=intsin^2x cos^2x cos xdx`
Use Pythagorean trigonometric identity: `sin^2x+cos^2x=1=>cos^2x=1-sin^2x`
`int sin^2x(1-sin^2x)cos xdx=`
`intsin^2x cos xdx-intsin^4x cosxdx`
``Make substitution: `t=sin x=>` `dt=cos x dx`
`int t^2dt-intt^4 dt=t^3/3-t^5/5+C=`
Return substitution to get the solution.
`(sin^3x)/3-(sin^5x)/5+C`
No comments:
Post a Comment