`int_0^(pi/2)sin^5(x)dx`
Let's first evaluate the definite integral,by rewriting the integrand as,
`=intsin^4(x)sin(x)dx`
Now use the identity: `sin^2(x)=1-cos^2(x)`
`=int(1-cos^2(x))^2sin(x)dx`
Now apply the integral substitution,
Let `u=cos(x)`
`=>du=-sin(x)dx`
`=int-(1-u^2)^2du`
`=-int(1-2u^2+u^4)du`
`=-int1du+2intu^2du-intu^4du`
`=-u+2(u^3/3)-u^5/5`
Substitute back `u=cos(x)`
and adding a constant C to the solution,
`intsin^5(x)dx=-cos(x)+2/3cos^3(x)-1/5cos^5(x)+C`
Now let's evaluate the definite integral,
`int_0^(pi/2)sin^5(x)dx=[-cos(x)+2/3cos^3(x)-1/5cos^5(x)]_0^(pi/2)`
`=[-cos(pi/2)+2/3cos^3(pi/2)-1/5cos^5(pi/2)]-[-cos(0)+2/3cos^3(0)-1/5cos^5(0)]`
`=[0]-[-1+2/3-1/5]`
`=-[(-15+10-3)/15]`
`=-(-8/15)`
`=8/15`
No comments:
Post a Comment