Tuesday, November 26, 2013

`int_0^(pi/2) sin^5(x) dx` Evaluate the integral

`int_0^(pi/2)sin^5(x)dx`


Let's first evaluate the definite integral,by rewriting the integrand as,


`=intsin^4(x)sin(x)dx`


Now use the identity: `sin^2(x)=1-cos^2(x)`


`=int(1-cos^2(x))^2sin(x)dx`


Now apply the integral substitution,


Let `u=cos(x)`


`=>du=-sin(x)dx`


`=int-(1-u^2)^2du`


`=-int(1-2u^2+u^4)du`


`=-int1du+2intu^2du-intu^4du`


`=-u+2(u^3/3)-u^5/5`


Substitute back `u=cos(x)`


and adding a constant C to the solution,


`intsin^5(x)dx=-cos(x)+2/3cos^3(x)-1/5cos^5(x)+C`


Now let's evaluate the definite integral,


`int_0^(pi/2)sin^5(x)dx=[-cos(x)+2/3cos^3(x)-1/5cos^5(x)]_0^(pi/2)`


`=[-cos(pi/2)+2/3cos^3(pi/2)-1/5cos^5(pi/2)]-[-cos(0)+2/3cos^3(0)-1/5cos^5(0)]`


`=[0]-[-1+2/3-1/5]`


`=-[(-15+10-3)/15]`


`=-(-8/15)`


`=8/15`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...