`int _(pi/4)^(pi/2) cot^5(x)csc^3(x)dx`
To solve, apply the Pythagorean identity `1+cot^2(x)=csc^2(x)` to express the integral in the form `int u^n du.`
`=int _(pi/4)^(pi/2) cot^2 (x) cot^3(x) csc^3(x)dx`
`=int_(pi/4)^(pi/2) (csc^2(x)-1) cot^3(x)csc^3(x)dx`
`=int_(pi/4)^(pi/2)( csc^5(x)cot^3(x)-csc^3(x)cot^3(x) )dx`
`=int_(pi/4)^(pi/2) ( csc^5(x) cot(x) cot^2(x) - csc^3(x) cot(x)cot^2(x) )dx`
`=int_(pi/4)^(pi/2) ( csc^5(x) cot(x) (csc^2(x)-1) - csc^3(x) cot(x) (csc^2(x) -1)) dx`
`=int_(pi/4)^(pi/2) (csc^7(x)cot(x)-csc^5(x)cot(x)-csc^5(x)cot(x) +csc^3(x)cot(x)) dx`
`=int_(pi/4)^(pi/2) (csc^7(x)cot(x) -2csc^5(x)cot(x) +csc^3(x)cotx) dx`
To take the integral, apply u-substitution method. So, let u be:
u=csc(x) dx
Then, differentiate u.
du = - csc(x) cot(x) dx
To be able to apply this, factor out -csc(x) cot(x).
`=int_(pi/4)^(pi/2) ( -csc^6(x) +2csc^4(x) -csc^2(x)) (-csc(x) cot(x) dx)`
Then, determine the value of u when x=pi/2 and x=pi/4.
`u=csc (x)`
`u= csc(pi/2)=1`
`u=csc(pi/4)=sqrt2`
Expressing the integral in terms of u, the integral becomes:
`=int _sqrt2^1 (-u^6 +2u^4-u^2) du`
`=( -u^7/7 +(2u^5)/5 -u^3/3 )_sqrt2^1 `
`=(-1/7+2/5-1/3) -(-(sqrt2)^7/7+(2(sqrt2)^5)/5-(sqrt2)^3/3)`
`=0.2201`
Therefore, `int _(pi/4)^(pi/2) cot^5(x) csc^3(x) dx=0.2201` .
No comments:
Post a Comment