Sunday, October 18, 2009

`int_(pi/4)^(pi/2) cot^5(x) csc^3(x) dx` Evaluate the integral

`int _(pi/4)^(pi/2) cot^5(x)csc^3(x)dx`


To solve, apply the Pythagorean identity  `1+cot^2(x)=csc^2(x)`      to express the integral in the form `int u^n du.`      


`=int _(pi/4)^(pi/2) cot^2 (x) cot^3(x) csc^3(x)dx`


`=int_(pi/4)^(pi/2) (csc^2(x)-1) cot^3(x)csc^3(x)dx`


`=int_(pi/4)^(pi/2)( csc^5(x)cot^3(x)-csc^3(x)cot^3(x) )dx`


`=int_(pi/4)^(pi/2) ( csc^5(x) cot(x) cot^2(x) - csc^3(x) cot(x)cot^2(x) )dx`


`=int_(pi/4)^(pi/2) ( csc^5(x) cot(x) (csc^2(x)-1) - csc^3(x) cot(x) (csc^2(x) -1)) dx`


`=int_(pi/4)^(pi/2) (csc^7(x)cot(x)-csc^5(x)cot(x)-csc^5(x)cot(x) +csc^3(x)cot(x)) dx`


`=int_(pi/4)^(pi/2) (csc^7(x)cot(x) -2csc^5(x)cot(x) +csc^3(x)cotx) dx`


To take the integral, apply u-substitution method. So, let u be:


     u=csc(x) dx


Then, differentiate u.


     du = - csc(x) cot(x) dx


To be able to apply this, factor out -csc(x) cot(x).


`=int_(pi/4)^(pi/2) ( -csc^6(x) +2csc^4(x) -csc^2(x)) (-csc(x) cot(x) dx)` 


Then, determine the value of u when x=pi/2 and x=pi/4.


     `u=csc (x)`


     `u= csc(pi/2)=1`


     `u=csc(pi/4)=sqrt2`


Expressing the integral in terms of u, the integral becomes:


`=int _sqrt2^1 (-u^6 +2u^4-u^2) du`


`=( -u^7/7 +(2u^5)/5 -u^3/3 )_sqrt2^1 `


`=(-1/7+2/5-1/3) -(-(sqrt2)^7/7+(2(sqrt2)^5)/5-(sqrt2)^3/3)`


`=0.2201`



Therefore, `int _(pi/4)^(pi/2) cot^5(x) csc^3(x) dx=0.2201`  .

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...