`int(1-tan^2(x))/(sec^2(x))dx`
Rewrite the integrand as,
`int(1-tan^2(x))/(sec^2(x))dx=int(1-(sin^2(x))/(cos^2(x)))/(1/(cos^2(x)))dx`
`=int(cos^2(x)-sin^2(x))dx`
Now use the following identities:
`cos^2(x)=(1+cos(2x))/2`
`sin^2(x)=(1-cos(2x))/2`
`=int((1+cos(2x))/2-(1-cos(2x))/2)dx`
`=int(1+cos(2x)-1+cos(2x))/2dx`
`=intcos(2x)dx`
`=sin(2x)/2`
add a constant C to the solution,
`=sin(2x)/2+C`
No comments:
Post a Comment