Wednesday, May 27, 2009

`int (1 - tan^2(x))/(sec^2(x)) dx` Evaluate the integral

`int(1-tan^2(x))/(sec^2(x))dx`


Rewrite the integrand as,


`int(1-tan^2(x))/(sec^2(x))dx=int(1-(sin^2(x))/(cos^2(x)))/(1/(cos^2(x)))dx`


`=int(cos^2(x)-sin^2(x))dx`


Now use the following identities:


`cos^2(x)=(1+cos(2x))/2`


`sin^2(x)=(1-cos(2x))/2`


`=int((1+cos(2x))/2-(1-cos(2x))/2)dx`


`=int(1+cos(2x)-1+cos(2x))/2dx`


`=intcos(2x)dx`


`=sin(2x)/2`


add a constant C to the solution,


`=sin(2x)/2+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...