Monday, July 25, 2016

`int (sin^3(sqrt(x)))/sqrt(x) dx` Evaluate the integral

`int[(sin^3sqrtx)/(sqrtx)]dx=`


Integrate using the u-substitution method. For this problem the u-substitution method will be used twice. The first time we substitute, let's use the variable y.


Let


`y=sqrtx`


`(dy)/dx=1/(2sqrtx)`


`dx=2sqrtxdy`



`int[(sin^3(y))/y*2sqrtxdy=`


`2int[(sin^3(y))/(y)]*ydy=`


`2intsin^3(y)dy=`


`2intsin^2(y)sin(y)dy=`


`2int(1-cos^2(y))sin(y)dy=`


The u-substitution method will be used a second time. We will use the variable u.


Let


`u=cosy`


`(du)/dy=-sin(y)`


`dy=(-sin(y))/(du)`



`2int(1-u^2)sin(y)[(du)/(-sin(y))]=`


`-2int(1-u^2)du=`


`-2[u-1/3u^3]+C=`


`-2u+2/3u^3+C`



Substitute in for u. `u=cos(y)`


`-2cos(y)+2/3cos^3(y)+C` 



Substitute in for y. `y=sqrtx`


`-2cos(sqrtx)+2/3cos^3(sqrtx)+C`



The final answer is:  `-2cos(sqrtx)+2/3cos^3(sqrtx)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...