`int[(sin^3sqrtx)/(sqrtx)]dx=`
Integrate using the u-substitution method. For this problem the u-substitution method will be used twice. The first time we substitute, let's use the variable y.
Let
`y=sqrtx`
`(dy)/dx=1/(2sqrtx)`
`dx=2sqrtxdy`
`int[(sin^3(y))/y*2sqrtxdy=`
`2int[(sin^3(y))/(y)]*ydy=`
`2intsin^3(y)dy=`
`2intsin^2(y)sin(y)dy=`
`2int(1-cos^2(y))sin(y)dy=`
The u-substitution method will be used a second time. We will use the variable u.
Let
`u=cosy`
`(du)/dy=-sin(y)`
`dy=(-sin(y))/(du)`
`2int(1-u^2)sin(y)[(du)/(-sin(y))]=`
`-2int(1-u^2)du=`
`-2[u-1/3u^3]+C=`
`-2u+2/3u^3+C`
Substitute in for u. `u=cos(y)`
`-2cos(y)+2/3cos^3(y)+C`
Substitute in for y. `y=sqrtx`
`-2cos(sqrtx)+2/3cos^3(sqrtx)+C`
The final answer is: `-2cos(sqrtx)+2/3cos^3(sqrtx)+C`
No comments:
Post a Comment