Sunday, June 19, 2016

`int sqrt(5 + 4x - x^2) dx` Evaluate the integral

`intsqrt(5+4x-x^2)dx`


Rewrite the integrand by completing the square: 


`=intsqrt(-(x-2)^2+9)dx`


Now apply the integral substitution,


Let u=x-2,


`=>du=dx`


`=intsqrt(9-u^2)du`


Now using the standard integral:


`intsqrt(a^2-x^2)dx=(xsqrt(a^2-x^2))/2+a^2/2sin^(-1)x/a+C`  


`intsqrt(9-u^2)du=(usqrt(3^2-u^2))/2+3^2/2sin^(-1)u/3`


`=(usqrt(9-u^2))/2+9/2sin^(-1)u/3`


Substitute back u=x-2,


`=((x-2)sqrt(9-(x-2)^2))/2+9/2sin^(-1)((x-2)/3)`


Add a constant C to the solution,


`=((x-2)sqrt(9-(x-2)^2))/2+9/2sin^(-1)((x-2)/3)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...