`intx(e^(x^2))dx`
Let's apply integral substitution,
Substitute `u=x^2`
`(du)/dx=2x`
`=>du=2xdx`
`=>dx=(1/(2x))du`
`intxe^(x^2)dx=intxe^u(1/(2x))du`
`=int1/2e^udu`
`=1/2inte^udu`
`=1/2e^u`
Substitute back `u=x^2`
`=1/2e^(x^2)`
Add a constant C to the solution,
`=1/2e^(x^2)+C`
No comments:
Post a Comment