Thursday, September 25, 2014

`int cos(theta)cos^5(sin(theta)) d theta` Evaluate the integral

`intcos(theta)cos^5(sin(theta))d theta`


Apply integral substitution,


Let `u=sin(theta)`


`=>du=cos(theta)d theta`


`=intcos^5(u)du`


Rewrite the above integrand as,


`=intcos^4(u)cos(u)du`


Now use the identity: `cos^2(x)=1-sin^2(x)`


`=int(1-sin^2(u))^2cos(u)du`


Apply the integral substitution,


Let `v=sin(u)`


`=>dv=cos(u)du`


`=int(1-v^2)^2dv`


`=int(1-2v^2+v^4)dv`


`=int1dv-2intv^2dv+intv^4dv`


`=v-2(v^3/3)+v^5/5`


Substitute back `v=sin(u)`


`=sin(u)-2/3sin^3(u)+1/5sin^5(u)`


Substitute back `u=sin(theta)`


`=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))`


Add a constant C to the solution,


`=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...