`intcos(theta)cos^5(sin(theta))d theta`
Apply integral substitution,
Let `u=sin(theta)`
`=>du=cos(theta)d theta`
`=intcos^5(u)du`
Rewrite the above integrand as,
`=intcos^4(u)cos(u)du`
Now use the identity: `cos^2(x)=1-sin^2(x)`
`=int(1-sin^2(u))^2cos(u)du`
Apply the integral substitution,
Let `v=sin(u)`
`=>dv=cos(u)du`
`=int(1-v^2)^2dv`
`=int(1-2v^2+v^4)dv`
`=int1dv-2intv^2dv+intv^4dv`
`=v-2(v^3/3)+v^5/5`
Substitute back `v=sin(u)`
`=sin(u)-2/3sin^3(u)+1/5sin^5(u)`
Substitute back `u=sin(theta)`
`=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))`
Add a constant C to the solution,
`=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))+C`
No comments:
Post a Comment