`inttan^4(x)sec^6(x)dx`
Rewrite the integrand as,
`=inttan^4(x)sec^2(x)sec^4(x)dx`
use the identity: `sec^2(x)=1+tan^2(x)`
`=inttan^4(x)sec^2(x)(1+tan^2(x))^2dx`
Now apply integral substitution,
Let `u=tan(x)`
`=>du=sec^2(x)dx`
`=intu^4(1+u^2)^2du`
`=intu^4(1+2u^2+u^4)du`
`=int(u^4+2u^6+u^8)du`
`=intu^4du+2intu^6du+intu^8du`
`=u^5/5+2(u^7/7)+u^9/9`
Substitute back `u=tan(x)`
`=1/5tan^5(x)+2/7tan^7(x)+1/9tan^9(x)`
Add a constant C to the solution,
`=1/5tan^5(x)+2/7tan^7(x)+1/9tan^9(x)+C`
No comments:
Post a Comment