Thursday, October 11, 2012

`int tan^4(x) sec^6(x) dx` Evaluate the integral

`inttan^4(x)sec^6(x)dx`


Rewrite the integrand as,


`=inttan^4(x)sec^2(x)sec^4(x)dx`


use the identity: `sec^2(x)=1+tan^2(x)`


`=inttan^4(x)sec^2(x)(1+tan^2(x))^2dx`


Now apply integral substitution,


Let `u=tan(x)`


`=>du=sec^2(x)dx`


`=intu^4(1+u^2)^2du`


`=intu^4(1+2u^2+u^4)du`


`=int(u^4+2u^6+u^8)du`


`=intu^4du+2intu^6du+intu^8du`


`=u^5/5+2(u^7/7)+u^9/9`


Substitute back `u=tan(x)`


`=1/5tan^5(x)+2/7tan^7(x)+1/9tan^9(x)`


Add a constant C to the solution,


`=1/5tan^5(x)+2/7tan^7(x)+1/9tan^9(x)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...