`intx^2/(3+4x-4x^2)^(3/2)dx`
Let's rewrite the denominator of the integrand,
`=intx^2/(-(4x^2-4x+1)+4)^(3/2)dx`
`=intx^2/((2^2-(2x-1)^2))^(3/2)dx`
Now let's use the integral substitution,
Let `2x-1=2sin(theta)`
`=>2x=1+2sin(theta)`
`=>x=(1+2sin(theta))/2`
`dx=1/2(2cos(theta))d theta`
`dx=cos(theta)d theta`
Plug the above in the integral,
`=int((1+2sin(theta))/2)^2/(2^2-2^2sin^2(theta))^(3/2)cos(theta)d theta`
`=int1/4((1+2sin(theta))^2cos(theta))/(2^2(1-sin^2(theta)))^(3/2)d theta`
`=1/4int((1+2sin(theta))^2cos(theta))/((2^2)^(3/2)(1-sin^2(theta))^(3/2))d theta`
`=1/4int((1+2sin(theta))^2cos(theta))/(2^3(1-sin^2(theta))^(3/2))d theta`
Now use the identity:`1-sin^2(x)=cos^2(x)`
`=1/32int((1+2sin(theta))^2cos(theta))/(cos^2(theta))^(3/2)d theta`
`=1/32int((1+4sin(theta)+4sin^2(theta))cos(theta))/(cos^3(theta))d theta`
`=1/32int(1+4sin(theta)+4sin^2(theta))/(cos^2(theta))d theta`
`=1/32int(1/(cos^2(theta))+(4sin(theta))/(cos^2(theta))+(4sin^2(theta))/(cos^2(theta))d theta`
`=1/32int(sec^2(theta)+4tan(theta)sec(theta)+4tan^2(theta))d theta`
Now use the identity:`tan^2(x)=sec^2(x)-1`
`=1/32int(sec^2(theta)+4tan(theta)sec(theta)+4(sec^2(theta)-1)d theta`
`=1/32int(5sec^2(theta)+4tan(theta)sec(theta)-4)d theta`
Now use the standard integrals,
`intsec^2(x)dx=tan(x)+C`
`intsec(x)tan(x)dx=sec(x)+C`
`=1/32(5tan(theta)+4sec(theta)-4theta)+C`
We have used the integral substitution `2x-1=2sin(theta)`
`=>sin(theta)=(2x-1)/2`
`theta=arcsin((2x-1)/2)`
Now let's find the `tan(theta)` and `sec(theta)` using the right triangle with angle `theta` and opposite side (2x-1) and hypotenuse as 2,
Use pythagorean identity to find the adjacent side A:
`A^2+(2x-1)^2=2^2`
`A^2+4x^2-4x+1=4`
`A^2=4-1+4x-4x^2=3+4x-4x^2`
`A=sqrt(3+4x-4x^2)`
`tan(theta)=(2x-1)/(sqrt(3+4x-4x^2))`
`sec(theta)=2/(sqrt(3+4x-4x^2))`
Now plug these in the above solution,
`=1/32(5*(2x-1)/(sqrt(3+4x-4x^2))+4*2/(sqrt(3+4x-4x^2))-4arcsin((2x-1)/2))+C`
`=1/32((10x-5+8)/sqrt(3+4x-4x^2)-4arcsin((2x-1)/2))+C`
`=1/32((10x+3)/sqrt(3+4x-4x^2)-4arcsin((2x-1)/2))+C`
No comments:
Post a Comment