Thursday, April 29, 2010

`int_0^(pi/4) sqrt(1 - cos(4 theta)) d theta` Evaluate the integral

`int_0^(pi/4)sqrt(1-cos(4theta))d theta`


Let' first compute the indefinite integral,


`intsqrt(1-cos(4theta))d theta`  


Apply the integral substitution.


Let `theta=u/2`


`=>d theta=1/2du`


`=int1/2sqrt(1-cos2u)du`


`=1/2intsqrt(1-cos2u)du`


use the identity:`cos(2x)=1-2sin^2(x)`


`=1/2intsqrt(1-(1-2sin^2u))du`


`=1/2intsqrt(2sin^2u)du`


`=1/2intsqrt(2)sqrt(sin^2(u))du`


`=sqrt(2)/2intsqrt(sin^2(u))du`


`=(1/sqrt(2))intsin(u)du`


Change the bounds from 0 to pi/4 to lower bound 0 and upper bound pi/2.


`int_0^(pi/2) sin(u) du`


`-cos(u)/sqrt(2)) |_0^(pi/2)`  


`= 0 - -1/sqrt(2) = 1/sqrt(2)`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...