`int_0^(pi/4)sqrt(1-cos(4theta))d theta`
Let' first compute the indefinite integral,
`intsqrt(1-cos(4theta))d theta`
Apply the integral substitution.
Let `theta=u/2`
`=>d theta=1/2du`
`=int1/2sqrt(1-cos2u)du`
`=1/2intsqrt(1-cos2u)du`
use the identity:`cos(2x)=1-2sin^2(x)`
`=1/2intsqrt(1-(1-2sin^2u))du`
`=1/2intsqrt(2sin^2u)du`
`=1/2intsqrt(2)sqrt(sin^2(u))du`
`=sqrt(2)/2intsqrt(sin^2(u))du`
`=(1/sqrt(2))intsin(u)du`
Change the bounds from 0 to pi/4 to lower bound 0 and upper bound pi/2.
`int_0^(pi/2) sin(u) du`
`-cos(u)/sqrt(2)) |_0^(pi/2)`
`= 0 - -1/sqrt(2) = 1/sqrt(2)`
No comments:
Post a Comment