Thursday, April 1, 2010

`int t sin^2(t) dt` Evaluate the integral

`inttsin^2(t)dt`


Let's use the method of integration by parts,


If f(x) and g(x) are differentiable functions, then


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Let's denote u=t and `v=sin^2(t)`


`u'=d/dt(t)=1`


as


`inttsin^2(t)dt=tintsin^2(t)dt-int(intsin^2(t)dt)dt`


Noe let's use the identity :`sin^2(x)=(1-cos(2x))/2`


`=tint(1-cos(2t))/2dt-int(int((1-cos(2t))/2)dt)dt`


`=t/2int(1-cos(2t)dt-int(1/2int(1-cos(2t))dt)dt`


`=t/2(t-sin(2t)/2)-1/2int(t-sin(2t)/2)dt`


`=t/2(t-sin(2t)/2)-1/2(t^2/2-(-cos(2t)/4))`


`=t^2/2-(tsin(2t))/4-t^2/4-cos(2t)/8`


`=t^2/4-(tsin(2t))/4-cos(2t)/8`


Add a constant C to the solution,


`=t^2/4-(tsin(2t))/4-cos(2t)/8+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...