Monday, February 2, 2009

`int_0^a (dx)/(a^2 + x^2)^(3/2) , a>0` Evaluate the integral

`int_0^adx/(a^2+x^2)^(3/2)`


Let's first evaluate the indefinite integral by integral substitution,


Let `x=atan(u)`


`dx=asec^2(u)du`


`intdx/(a^2+x^2)^(3/2)=int(asec^2(u)du)/(a^2+a^2tan^2(u))^(3/2)`


`=int(asec^2(u))/(a^2(1+tan^2(u)))^(3/2)du`


`=int(asec^2(u))/((a^2)^(3/2)(1+tan^2(u))^(3/2))du`


Use the identity:`1+tan^2(x)=sec^2(x)`


`=int(asec^2(u))/((a^3)(sec^2(u))^(3/2))du`


`=1/a^2int(sec^2(u))/(sec^3(u))du`


`=1/a^2int1/sec(u)du`


`=1/a^2intcos(u)du` 


`=1/a^2(sin(u))`


We have used `x=atan(u)`


`tan(u)=x/a`


Now let's find sin(u) for triangle with angle theta, opposite side as x and adjacent side as a and hypotenuse as h,


`h^2=x^2+a^2`


`h=sqrt(x^2+a^2)`


So, `sin(u)=x/sqrt(x^2+a^2)`


`=1/a^2(x/sqrt(x^2+a^2))`


Add a constant C to the solution.


`=1/a^2(x/sqrt(x^2+a^2))+C`


Now let's evaluate the definite integral,


`int_0^a(dx)/(a^2+x^2)^(3/2)=[1/a^2(x/sqrt(x^2+a^2))]_0^a`


`=[1/a^2(a/sqrt(a^2+a^2))]-[1/a^2(0/sqrt(0^2+a^2))]`


`=[1/(asqrt(2a^2))]-[0]`


`=(1/(a^2sqrt(2)))`


`=1/(sqrt(2)a^2)`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...