`int (tan^2(x)+tan^4(x))dx`
Factor out the GCF of the two terms.
`= int tan^2(x)(1 + tan^2(x)) dx`
Then, apply the trigonometric identity `sec ^2 theta = tan^2 theta + 1` .
`= int tan^2(x) sec^2(x)dx`
To take the integral of this, use u-substitution method. So let u be:
`u= tan(x)`
Then, differentiate u.
`du = sec^2(x) dx`
Plugging them, the integral becomes:
`= int u^2du`
Then, apply the formula `int u^n du = u^(n+1)/(n+1)+C` .
`= u^3/3 + C`
And, substitute back u = tan(x).
`= (tan^3(x))/3 + C`
Therefore, `int (tan^2(x)+tan^4(x))dx = (tan^3(x))/3+C` .
No comments:
Post a Comment