`inttan^2(theta)sec^4(theta)d theta`
Rewrite the integrand as,
`=intsec^2(theta)sec^2(theta)tan^2(theta)d theta`
Now use the identity: `sec^2(x)=1+tan^2(x)`
`=int(1+tan^2(theta))sec^2(theta)tan^2(theta)d theta`
Now apply integral substitution,
Let `u=tan(theta)`
`du=sec^2(theta)d theta`
`=int(1+u^2)u^2du`
`=int(u^2+u^4)du`
`=u^3/3+u^5/5`
Substitute back `u=tan(theta)`
`=(tan^3(theta))/3+(tan^5(theta))/5`
add a constant C to the solution,
`=(tan^3(theta))/3+(tan^5(theta))/5+C`
No comments:
Post a Comment