Monday, October 10, 2016

`int tan^2(theta) sec^4(theta) d theta` Evaluate the integral

`inttan^2(theta)sec^4(theta)d theta`


Rewrite the integrand as,


`=intsec^2(theta)sec^2(theta)tan^2(theta)d theta`


Now use the identity: `sec^2(x)=1+tan^2(x)`


`=int(1+tan^2(theta))sec^2(theta)tan^2(theta)d theta`


Now apply integral substitution,


Let `u=tan(theta)`


`du=sec^2(theta)d theta`


`=int(1+u^2)u^2du`


`=int(u^2+u^4)du`


`=u^3/3+u^5/5`


Substitute back `u=tan(theta)`


`=(tan^3(theta))/3+(tan^5(theta))/5`


add a constant C to the solution,


`=(tan^3(theta))/3+(tan^5(theta))/5+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...