Thursday, April 21, 2016

`int tan^2(x) sec(x) dx` Evaluate the integral

`inttan^2(x)sec(x)dx`


use the identity:`tan^2(x)=sec^2(x)-1`


`inttan^2(x)sec(x)dx=int(sec^2(x)-1)sec(x)dx`


`=int(sec^3(x)-sec(x))dx` 


Now apply the Integral Reduction:`intsec^n(x)dx=(sec^(n-1)(x)sin(x))/(n-1)+(n-2)/(n-1)intsec^(n-2)(x)dx`


`intsec^3(x)dx=(sec^2(x)sin(x))/2+1/2intsec(x)dx` 


Use the common integral:`intsec(x)dx=ln(tan(x)+sec(x))`


`:.inttan^2(x)sec(x)dx=(sec^2(x)sin(x))/2+1/2intsec(x)dx-intsec(x)dx`


`=(sec^2(x)sin(x))/2-1/2intsec(x)dx`


`=(sec^2(x)sin(x))/2-1/2ln(tan(x)+sec(x))`


add a constant C to the solution,


`=(sec^2(x)sin(x))/2-1/2ln(tan(x)+sec(x))+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...