You need to re-write the expression` t^2 - 1` , such that:
`t^2 - 1 = t^2(1 - (1/t)^2)`
You need to use the following substitution, such that:
`1/t = sin u => -1/(t^2) dt = cos u du => (dt)/(t^2) = -cos u du`
`u = arcsin (1/t)`
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = - int_(u_1)^(u_2) (cos u du)/(1/(sin u)*sqrt(1 - sin^2 u))`
You need to use the basic trigonometric formula `1 - sin^2 u = cos^2 u,` such that:
`- int_(u_1)^(u_2) (cos u*sin u du)/(sqrt(1 - sin^2 u)) = - int_(u_1)^(u_2) `
`- int_(u_1)^(u_2) (cos u*sin u du)/(sqrt(cos^2 u)) = - int_(u_1)^(u_2) (cos u*sin u du)/(cos u)`
Reducing like terms yields:
`-int_(u_1)^(u_2) (sin udu) = -(-cos u)|_(u_1)^(u_2)`
Replacing back the variable, yields:
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) =(cos (arcsin (1/t)))_(sqrt 2)^2`
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) =cos (arcsin (1/2)) - cos (arcsin (1/sqrt 2))`
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = cos(pi/6) - cos(pi/4)`
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = sqrt3/2 - sqrt2/2`
`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = (sqrt3 - sqrt2)/2`
Hence, evaluating the given integral yields `int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = (sqrt3 - sqrt2)/2.`
No comments:
Post a Comment