`int (sin (omega))/(cos^3 (omega))d omega`
To solve, apply u-substitution method. So, let u be:
`u = cos (omega)`
The, differentiate u.
`du = -sin (omega) d omega`
Since the sine function present in the integrand is positive, divide both sides by -1.
`(du)/(-1) = (-sin (omega) d omega)/(-1)`
`-du= sin (omega) d omega`
Plugging them, the integral becomes:
`= int (-du) / u^3`
`= int -u^(-3) du`
To take the integral of this, apply the formula `int u^(n+1)/(n+1)+C` .
`= -u^(-2)/(-2) + C`
`= u^(-2)/2+C`
`= 1/(2u^2)+C`
And, substitute back `u = cos (omega)` .
`= 1/(2cos^2(omega)) + C`
Therefore, `int (sin (omega))/(cos ^3(omega)) d omega = 1/(2cos^2(omega)) + C` .
No comments:
Post a Comment