Friday, December 27, 2013

`int sin(omega)/(cos^3(omega)) d omega` Evaluate the integral

`int (sin (omega))/(cos^3 (omega))d omega`


To solve, apply u-substitution method. So, let u be:


          `u = cos (omega)`


The, differentiate u.


        `du = -sin (omega) d omega`


Since the sine function present in the integrand is positive, divide both sides by -1.


          `(du)/(-1) = (-sin (omega) d omega)/(-1)`


     `-du= sin (omega) d omega`


Plugging them, the integral becomes:


`= int (-du) / u^3`


`= int -u^(-3) du`


To take the integral of this, apply the formula `int u^(n+1)/(n+1)+C` .


`= -u^(-2)/(-2) + C`


`= u^(-2)/2+C`


`= 1/(2u^2)+C`


And, substitute back `u = cos (omega)` .


`= 1/(2cos^2(omega)) + C`



Therefore,  `int (sin (omega))/(cos ^3(omega)) d omega = 1/(2cos^2(omega)) + C` .

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...