`int_0^1sqrt(x^2+1)dx`
Let's first evaluate the definite integral using the standard integral,
`intsqrt(a^2+x^2)dx=(xsqrt(a^2+x^2))/2+a^2/2ln|x+sqrt(a^2+x^2)|+C`
`intsqrt(x^2+1)dx=(xsqrt(1^2+x^2))/2+1^2/2ln|x+sqrt(1^2+x^2)|+C`
`=(xsqrt(1+x^2))/2+1/2ln|x+sqrt(1+x^2)|+C`
Now let's evaluate the definite integral,
`int_0^1sqrt(x^2+1)dx=[(xsqrt(1+x^2))/2+1/2ln|x+sqrt(1+x^2)|]_0^1`
`=[(1sqrt(1+1))/2+1/2ln|1+sqrt(1+1)|]-[(0sqrt(1+0))/2+1/2ln|0+sqrt(1+0)|]`
`=[sqrt(2)/2+1/2ln|1+sqrt(2)|]-[0+1/2ln(1)]`
`=sqrt(2)/2+1/2ln(1+sqrt(2))`
Since `arcsinh(x)=ln(x+sqrt(x^2+1))`
`=1/2(sqrt(2)+arcsinh(1))`
No comments:
Post a Comment