Friday, March 1, 2013

`(4, -4), y = -2x - 3` Find the distance between the point and the line.

The formula to determine the distance from a point (xo,yo) to a line Ax+By+C=0 is:


`d=|Ax_o + By_o + C|/sqrt(A^2+B^2)`


To apply, set one side of the given equation equal to zero.


`y=-2x-3`


`2x+y+3=0`


Then, plug-in the coefficients of x and y, as well as the constant to the formula.


`d=|2x_o +1y_o +3|/sqrt(2^2+1^2)`


`d=|2x_o + y_o +3|/sqrt5`


And, plug-in the given point (4,-4).


`d=|2(4)+(-4)+3|/sqrt5`


`d=7/sqrt5`


`d=7/sqrt5*sqrt5/sqrt5`


`d=(7sqrt5)/5`


Therefore, the point (4,-4) is `(7sqrt5)/5` units away from the line y=-2x-3.

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...