Tuesday, December 7, 2010

`int (dt)/(t^2 sqrt(t^2 - 16))` Evaluate the integral

`int1/(t^2sqrt(t^2-16))dt`


Let's evaluate the integral by applying integral substitution,


Let `t=4sec(u)`


`=>dt=4tan(u)sec(u)du`


Plug the above in the integral,


`int1/(t^2sqrt(t^2-16))dt=int(4tan(u)sec(u))/((4^2sec^2(u)sqrt(4^2sec^2(u)-16)))du`


`=int(4tan(u)sec(u))/(16sec^2(u)*4sqrt(sec^2(u)-1))du`


`=inttan(u)/(16sec(u)sqrt(sec^2(u)-1))du`


Now use the identity:`sec^2(x)=1+tan^2(x)`


`=1/16inttan(u)/(sec(u)sqrt(1+tan^2(u)-1))du`


`=1/16inttan(u)/(sec(u)tan(u))du`


`=1/16int1/sec(u)du`


`=1/16intcos(u)du`


Now use the standard integral:`intcos(x)dx=sin(x)+C`


`=1/16sin(u)+C`


We have used `t=4sec(u)`


`=>u=arcsec(t/4)`


Substitute back u in the solution,


`=1/16sin(arcsec(t/4))+C`


Simplify the above by assuming the right triangle with angle `theta=arcsec(t/4)`


Hypotenuse is t and adjacent side is 4, Opposite side(O) can be found by using pythagorean identity,


`4^2+O^2=t^2`


`O^2=t^2-16`


`O=sqrt(t^2-16)`


`sin(theta)=sqrt(t^2-16)/t`


Hence the solution is `1/16(sqrt(t^2-16)/t)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...