Thursday, December 30, 2010

`int csc^4(x) cot^6(x) dx` Evaluate the integral

`intcsc^4(x)cot^6(x)dx`


Rewrite the integrand by applying the identity,`1+cot^2(x)=csc^2(x)`


`=int(1+cot^2(x))^2cot^6(x)dx`


Apply integral substitution,


Let `u=cot(x)`


`=>du=-csc^2(x)dx`


`=>dx=(-1/(csc^2(x)))du=-1/(1+u^2)du`


`=int(1+u^2)^2u^6(-1/(1+u^2))du`


`=-int(1+u^2)u^6du`


`=-int(u^6+u^8)du`


`=-(intu^6du+intu^8du)`


`=-(u^7/7+u^9/9)`


`=-1/7u^7-1/9u^9`


Substitute back `u=cot(x)`


`=-1/7cot^7(x)-1/9cot^9(x)`


Add a constant C to the solution,


`=-1/7cot^7(x)-1/9cot^9(x)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...