`intcsc^4(x)cot^6(x)dx`
Rewrite the integrand by applying the identity,`1+cot^2(x)=csc^2(x)`
`=int(1+cot^2(x))^2cot^6(x)dx`
Apply integral substitution,
Let `u=cot(x)`
`=>du=-csc^2(x)dx`
`=>dx=(-1/(csc^2(x)))du=-1/(1+u^2)du`
`=int(1+u^2)^2u^6(-1/(1+u^2))du`
`=-int(1+u^2)u^6du`
`=-int(u^6+u^8)du`
`=-(intu^6du+intu^8du)`
`=-(u^7/7+u^9/9)`
`=-1/7u^7-1/9u^9`
Substitute back `u=cot(x)`
`=-1/7cot^7(x)-1/9cot^9(x)`
Add a constant C to the solution,
`=-1/7cot^7(x)-1/9cot^9(x)+C`
No comments:
Post a Comment