Thursday, November 5, 2009

`int_0^(pi/4) sec^4(theta) tan^4(theta) d theta` Evaluate the integral

`int_0^(pi/4)sec^4(theta)tan^4(theta)d theta`


Let's evaluate the indefinite integral by rewriting the integrand as,


`intsec^3(theta)tan^4(theta)d theta=intsec^2(theta)sec^2(theta)tan^4(theta)d theta`


Now use the identity:`1+tan^2(x)=sec^2(x)`


`=int(1+tan^2(theta))sec^2(theta)tan^4(theta)d theta`


Now apply integral substitution,


Let `u=tan(theta)`


`=>du=sec^2(theta)d theta`


`=int(1+u^2)u^4du`


`=int(u^4+u^6)du`


`=intu^4du+intu^6du`


`=u^5/5+u^7/7`


Substitute back `u=tan(theta)`


`=1/5tan^5(theta)+1/7tan^7(theta)`


Add a constant to the solution,


`=1/5tan^5(theta)+1/7tan^7(theta)+C`


Now let's evaluate the definite integral,


`int_0^(pi/4)sec^4(theta)tan^4(theta)d theta=[1/5tan^5(theta)+1/7tan^7(theta)]_0^(pi/4)`


`=[1/5tan^5(pi/4)+1/7tan^7(pi/4)]-[1/5tan^5(0)+1/7tan^7(0)]`


`=[1/5+1/7]-[0]`


`=[(7+5)/35]`


`=12/35`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...