`int_0^(pi/4)sec^4(theta)tan^4(theta)d theta`
Let's evaluate the indefinite integral by rewriting the integrand as,
`intsec^3(theta)tan^4(theta)d theta=intsec^2(theta)sec^2(theta)tan^4(theta)d theta`
Now use the identity:`1+tan^2(x)=sec^2(x)`
`=int(1+tan^2(theta))sec^2(theta)tan^4(theta)d theta`
Now apply integral substitution,
Let `u=tan(theta)`
`=>du=sec^2(theta)d theta`
`=int(1+u^2)u^4du`
`=int(u^4+u^6)du`
`=intu^4du+intu^6du`
`=u^5/5+u^7/7`
Substitute back `u=tan(theta)`
`=1/5tan^5(theta)+1/7tan^7(theta)`
Add a constant to the solution,
`=1/5tan^5(theta)+1/7tan^7(theta)+C`
Now let's evaluate the definite integral,
`int_0^(pi/4)sec^4(theta)tan^4(theta)d theta=[1/5tan^5(theta)+1/7tan^7(theta)]_0^(pi/4)`
`=[1/5tan^5(pi/4)+1/7tan^7(pi/4)]-[1/5tan^5(0)+1/7tan^7(0)]`
`=[1/5+1/7]-[0]`
`=[(7+5)/35]`
`=12/35`
No comments:
Post a Comment