`int_0^ax^2sqrt(a^2-x^2)dx`
Let's evaluate the indefinite integral by applying integral substitution,
Let `x=asin(u)`
`dx=acos(u)du`
`intx^2sqrt(a^2-x^2)dx=int(asin(u))^2sqrt(a^2-(asin(u))^2)acos(u)du`
`=inta^2sin^2(u)sqrt(a^2-a^2sin^2(u))acos(u)du`
`=a^3intsin^2(u)cos(u)sqrt(a^2(1-sin^2(u)))du`
`=a^3intsin^2(u)cos(u)asqrt(1-sin^2(u))du`
Now use the identity:`1-sin^2(x)=cos^2(x)`
`=a^4intsin^2(u)cos(u)sqrt(cos^2(u))du`
`=a^4intsin^2(u)cos^2(u)du`
Now use the identity:`cos^2(x)sin^2(x)=(1-cos(4x))/8`
`=a^4int(1-cos(4u))/8du`
`=a^4/8int(1-cos(4u)du`
`=a^4/8(int1du-intcos(4u)du)`
`=a^4/8(u-sin(4u)/4)`
Substitute back `u=arcsin(x/a)`
`=a^4/8(arcsin(x/a)-sin(4arcsin(x/a))/4)`
add a constant C to the solution,
`=a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))+C`
Now let's evaluate the definite integral,
`int_0^ax^2sqrt(a^2-x^2)dx=[a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))]_0^a`
`=[a^4/8(arcsin(a/a)-1/4sin(4arcsin(a/a)))]-[a^4/8(arcsin(0/a)-1/4sin(4arcsin(0/a)))]`
`=[a^4/8(arcsin(1)-1/4sin(4arcsin(1)))]-[a^4/8(arcsin(0)-1/4sin(4arcsin(0)))]`
`=[a^4/8(pi/2-1/4sin(4*pi/2))]-[a4/8(0-1/4sin(4*0))]`
`=[a^4/8(pi/2-1/4sin(2pi))]-[0]`
`=[a^4/8(pi/2-1/4(0))]`
`=a^4/8(pi/2)`
`=(pia^4)/16`
No comments:
Post a Comment