Thursday, March 26, 2009

`int_0^a x^2 sqrt(a^2 - x^2) dx` Evaluate the integral

`int_0^ax^2sqrt(a^2-x^2)dx`


Let's evaluate the indefinite integral by applying integral substitution,


Let `x=asin(u)`


`dx=acos(u)du`


`intx^2sqrt(a^2-x^2)dx=int(asin(u))^2sqrt(a^2-(asin(u))^2)acos(u)du`


`=inta^2sin^2(u)sqrt(a^2-a^2sin^2(u))acos(u)du`


`=a^3intsin^2(u)cos(u)sqrt(a^2(1-sin^2(u)))du`


`=a^3intsin^2(u)cos(u)asqrt(1-sin^2(u))du` 


Now use the identity:`1-sin^2(x)=cos^2(x)`


`=a^4intsin^2(u)cos(u)sqrt(cos^2(u))du`


`=a^4intsin^2(u)cos^2(u)du`


Now use the identity:`cos^2(x)sin^2(x)=(1-cos(4x))/8`


`=a^4int(1-cos(4u))/8du`


`=a^4/8int(1-cos(4u)du`


`=a^4/8(int1du-intcos(4u)du)`


`=a^4/8(u-sin(4u)/4)`


Substitute back `u=arcsin(x/a)`


`=a^4/8(arcsin(x/a)-sin(4arcsin(x/a))/4)`


add a constant C to the solution,


`=a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))+C`


Now let's evaluate the definite integral,


`int_0^ax^2sqrt(a^2-x^2)dx=[a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))]_0^a`


`=[a^4/8(arcsin(a/a)-1/4sin(4arcsin(a/a)))]-[a^4/8(arcsin(0/a)-1/4sin(4arcsin(0/a)))]`


`=[a^4/8(arcsin(1)-1/4sin(4arcsin(1)))]-[a^4/8(arcsin(0)-1/4sin(4arcsin(0)))]`


`=[a^4/8(pi/2-1/4sin(4*pi/2))]-[a4/8(0-1/4sin(4*0))]`


`=[a^4/8(pi/2-1/4sin(2pi))]-[0]`


`=[a^4/8(pi/2-1/4(0))]`


`=a^4/8(pi/2)`


`=(pia^4)/16`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...