`tan^5(x)sec^4(x)=(sin^5(x))/(cos^9(x))=(1-cos^2(x))^2/(cos^9(x))*sin(x).`
Make a substitution `y=cos(x),` then `dy=-sin(x) dx` and the indefinite integral is equal to
`-int (1-y^2)^2/y^9 dy=-int(y^(-9)-2y^(-7)+y^(-5)) dy=`
`=1/8 y^(-8)-1/3 y^(-6)+1/4 y^(-4)+C.`
And the definite integral is equal to
`(1/8 y^(-8)-1/3 y^(-6)+1/4 y^(-4))|_(y=cos(0)=1)^(y=cos(pi/3)=1/2)=`
`=1/8(2^8-1)-1/3(2^6-1)+1/4(2^4-1)=255/8-21+30/8=117/8.`
No comments:
Post a Comment