Sunday, December 2, 2012

`int sqrt(1 - 4x^2) dx` Evaluate the integral

`intsqrt(1-4x^2)dx`


`=intsqrt(1-(2x)^2)dx`


Now apply the integral substitution,


Let u=2x,


`=>du=dx`


`=intsqrt(1-u^2)du`


Now using the standard integral,


`intsqrt(a^2-x^2)dx=(xsqrt(a^2-x^2))/2+a^2/2arcsin(x/a)+C`


`=(usqrt(1-u^2))/2+1/2arcsin(u/1)+C`


Now substitute back u=2x,


`=(2xsqrt(1-(2x)^2))/2+1/2arcsin((2x)/1)+C`


`=xsqrt(1-4x^2)+1/2arcsin(2x)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...