Friday, June 15, 2012

`int sqrt(x^2 - 9)/x^3 dx` Evaluate the integral

`intsqrt(x^2-9)/x^3dx`


Let's evaluate the integral: Apply integration by parts,


`intuv'=uv-intu'v`


Let `u=sqrt(x^2-9)`


`v'=1/x^3`


`u'=d/dx(sqrt(x^2-9))`


`u'=1/2(x^2-9)^(1/2-1)(2x)`


`u'=x/sqrt(x^2-9)`


`v=int1/x^3dx`


`v=x^(-3+1)/(-3+1)`


`v=-1/(2x^2)`


`intsqrt(x^2-9)/x^3dx=sqrt(x^2-9)(-1/(2x^2))-intx/sqrt(x^2-9)(-1/(2x^2))dx`


`=-sqrt(x^2-9)/(2x^2)+1/2int1/(xsqrt(x^2-9))dx`


Apply the integral substitution `y=sqrt(x^2-9)`


`dy=1/2(x^2-9)^(1/2-1)(2x)dx`


`dy=x/sqrt(x^2-9)dx`


`dy=(xdx)/y`


`=-sqrt(x^2-9)/(2x^2)+1/2int(ydy)/x(1/(xy))`


`=-sqrt(x^2-9)/(2x^2)+1/2intdy/x^2`


`=-sqrt(x^2-9)/(2x^2)+1/2intdy/(y^2+9)`


Now use the standard integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)+C`


`=-sqrt(x^2-9)/(2x^2)+1/2(1/3arctan(y/3))`


Substitute back `y=sqrt(x^2-9)` and add a constant C to the solution,


`=-sqrt(x^2-9)/(2x^2)+1/6arctan(sqrt(x^2-9)/3)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...