Wednesday, June 16, 2010

`int tan^5(x) sec^3(x) dx` Evaluate the integral

`inttan^5(x)sec^3(x)dx`


Rewrite the integrand as,


`=inttan^4(x)tanx(x)sec^3(x)dx`


Now use the identity: `tan^2(x)=sec^2(x)-1`


`=int(sec^2(x)-1)^2sec^3(x)tan(x)dx`


Now apply the integral substitution,


Let `u=sec(x)`


`du=sec(x)tan(x)dx`


`=int(u^2-1)^2u^2du`


`=int(u^4-2u^2+1)u^2u`


`=int(u^6-2u^4+u^2)du`


`=intu^6du-2intu^4du+intu^2du`


`=u^7/7-2(u^5/5)+u^3/3`


Substitute back `u=sec(x)`


`=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)`


Add a constant C to the solution,


`=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...