`inttan^5(x)sec^3(x)dx`
Rewrite the integrand as,
`=inttan^4(x)tanx(x)sec^3(x)dx`
Now use the identity: `tan^2(x)=sec^2(x)-1`
`=int(sec^2(x)-1)^2sec^3(x)tan(x)dx`
Now apply the integral substitution,
Let `u=sec(x)`
`du=sec(x)tan(x)dx`
`=int(u^2-1)^2u^2du`
`=int(u^4-2u^2+1)u^2u`
`=int(u^6-2u^4+u^2)du`
`=intu^6du-2intu^4du+intu^2du`
`=u^7/7-2(u^5/5)+u^3/3`
Substitute back `u=sec(x)`
`=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)`
Add a constant C to the solution,
`=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)+C`
No comments:
Post a Comment