Friday, December 5, 2008

`int x tan^2(x) dx` Evaluate the integral

`intxtan^2(x)dx`


Let's evaluate the above integral by using the method of integration by parts,


If f(x) and g(x) are differentiable functions , then


`intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Let's denote u=x and `v=tan^2(x)`


`intxtan^2(x)dx=x*inttan^2(x)dx-int(1inttan^2(x)dx)dx`


Now let's use the identity:`tan^2(x)=sec^2(x)-1`


`=x*int(sec^2(x)-1)dx-int(int(sec^2(x)-1)dx)dx`


`=x*(intsec^2(x)dx-int1dx)-int(int(sec^2(x)-1)dx)dx`


`=x*(tan(x)-x)-int(tan(x)-x)dx`


`=xtan(x)-x^2-inttan(x)+intxdx`


`=xtan(x)-x^2-(-ln|cos(x)|)+x^2/2`


`=xtan(x)-x^2+x^2/2+ln|cos(x)|`


`=xtan(x)+ln|cos(x)|-x^2/2`


Add a constant C to the solution,


`=xtan(x)+ln|cos(x)|-x^2/2+C`


` `

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...