`intxtan^2(x)dx`
Let's evaluate the above integral by using the method of integration by parts,
If f(x) and g(x) are differentiable functions , then
`intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx`
If we write f(x)=u and g'(x)=v, then
`intuvdx=uintvdx-int(u'intvdx)dx`
Let's denote u=x and `v=tan^2(x)`
`intxtan^2(x)dx=x*inttan^2(x)dx-int(1inttan^2(x)dx)dx`
Now let's use the identity:`tan^2(x)=sec^2(x)-1`
`=x*int(sec^2(x)-1)dx-int(int(sec^2(x)-1)dx)dx`
`=x*(intsec^2(x)dx-int1dx)-int(int(sec^2(x)-1)dx)dx`
`=x*(tan(x)-x)-int(tan(x)-x)dx`
`=xtan(x)-x^2-inttan(x)+intxdx`
`=xtan(x)-x^2-(-ln|cos(x)|)+x^2/2`
`=xtan(x)-x^2+x^2/2+ln|cos(x)|`
`=xtan(x)+ln|cos(x)|-x^2/2`
Add a constant C to the solution,
`=xtan(x)+ln|cos(x)|-x^2/2+C`
` `
No comments:
Post a Comment