Thursday, November 13, 2008

`int sin^3(theta) cos^4(theta) d theta` Evaluate the integral

`intsin^3(theta)cos^4(theta)d theta`


Rewrite the integrand as,


`=intsin^2(theta)sin(theta)cos^4(theta)d theta`


Now use the identity: `sin^2(x)=1-cos^2(x)`


`=int(1-cos^2(theta))sin(theta)cos^4(theta)d theta`


Now apply integral substitution.


Let `u=cos(theta)`


`=>du=-sin(theta)d theta`


`=int-(1-u^2)u^4du`


`=-int(1-u^2)u^4du`


`=-int(u^4-u^6)du`


`=-intu^4du+intu^6du`


`=-u^5/5+u^7/7`


Substitute back `u=cos(theta)`


`=-1/5cos^5(theta)+1/7cos^7(theta)`


Add a constant C to the solution,


`=-1/5cos^5(theta)+1/7cos^7(theta)+C`

No comments:

Post a Comment

What are hearing tests?

Indications and Procedures Hearing tests are done to establish the presence, type, and sever...