`intsin^3(theta)cos^4(theta)d theta`
Rewrite the integrand as,
`=intsin^2(theta)sin(theta)cos^4(theta)d theta`
Now use the identity: `sin^2(x)=1-cos^2(x)`
`=int(1-cos^2(theta))sin(theta)cos^4(theta)d theta`
Now apply integral substitution.
Let `u=cos(theta)`
`=>du=-sin(theta)d theta`
`=int-(1-u^2)u^4du`
`=-int(1-u^2)u^4du`
`=-int(u^4-u^6)du`
`=-intu^4du+intu^6du`
`=-u^5/5+u^7/7`
Substitute back `u=cos(theta)`
`=-1/5cos^5(theta)+1/7cos^7(theta)`
Add a constant C to the solution,
`=-1/5cos^5(theta)+1/7cos^7(theta)+C`
No comments:
Post a Comment